StartseiteWissenschaft und TechnikNeuartiges Bonding-Verfahren verschließt strukturierte Glasträger exakt

Neuartiges Bonding-Verfahren verschließt strukturierte Glasträger exakt: OnPrNews.com

Forschern der Hochschule Karlsruhe ist es gelungen, ein schonendes, kostengünstiges und einfaches Laminierungsverfahren zu entwickeln, bei dem die Mikrostrukturen auf dem Träger nicht beeinträchtigt werden.

In der Mikrofluidik geht es vor allem darum, wie sich Gase und Flüssigkeiten auf kleinstem Raum verhalten. Vor allem bei Methoden wie „Lab-on-a-Chip“ oder „Miniaturized Total Analytical System“ wird mit mikrofluidischen Chips gearbeitet. Dabei geht es vor allem darum, kleinste Stoffmengen wie z.B. Biomoleküle, Bakterien oder Flüssigkeiten zu kontrollieren, um Reaktionen oder Analysen zu steuern.
Für unterschiedlichste Anwendungen in Fachbereichen wie Chemie, Medizin, Luft- und Raumfahrttechnik, Umweltanalytik oder auch in der Lebensmittelindustrie ist es daher wichtig, Mikrostrukturen auf kleinstem Raum realisieren zu können. Dadurch werden immer neue Anforderungen an die Herstellungsverfahren solcher Mikrofluidikbauteile gestellt.
Forschern der Hochschule Karlsruhe ist es nun gelungen, ein schonendes, kostengünstiges und einfaches Laminierungsverfahren zu entwickeln, bei dem die Mikrostrukturen auf dem Träger nicht beeinträchtigt werden. Im Vergleich zu den herkömmlichen Verfahren kann hier das Laminat mit dem Träger durch geringen Anpressdruck und niedrige Temperaturen verbunden werden.
Wurden bisher die Folien direkt mit dem Träger verklebt oder eine Polymerschicht direkt auf den Träger aufgetragen, wird bei dem neuen Verfahren die Laminatschicht getrennt vom Träger hergestellt und erst danach mit dem Träger verbunden. Die Nachteile der herkömmlichen, teils sehr aufwendigen, Herstellungstechnik werden vermieden.
Bislang wird die Verbindung eines beispielsweise thermoplastischen Trägers mit dem Laminat durch Ultraschallschweißen oder mit Hilfe sehr hoher Temperaturen hergestellt. Hier kann es jedoch passieren, dass durch das direkte Auftragen der Polymerschicht auf den Träger die Strukturen im Träger verstopft oder verengt werden.
Bei dem von Prof. Christian Karnutsch und Jörg Knyrim entwickelten Verfahren wird zunächst ein Polymer in der gewünschten Schichtdicke (im Bereich von 0,5 bis 1000 µm) mit Hilfe eines Arbeitsstempels hergestellt und erst anschließend auf das Trägermaterial übertragen. Mit dieser Laminationsschicht können die erzeugten Kanalstrukturen auf dem Träger ganz oder teilweise überdeckt werden. Die Schichtdicke kann exakt eingestellt werden, was z.B. für die Lichtdurchlässigkeit für mikroskopische Nachweisverfahren wichtig ist.
Mit dieser Methode ist auch der Aufbau mehrschichtiger Systeme, so genannte Multilayer, möglich. Das Laminat selbst kann durch einen geeigneten strukturierten Stempel ebenfalls mit einer Funktionsstruktur versehen werden.
Das Verfahren lässt sich für verschiedene Trägermaterialien anwenden. Es eignet sich vor allem für Glas, wodurch es für den diagnostischen Bereich hervorragend geeignet ist. Durch das neue Verfahren können nicht nur die Nachteile der herkömmlichen Herstellungstechnik eliminiert werden. Die exakt einstellbare Schichtstärke (z.B. für die Lichtdurchlässigkeit bei mikroskopischen Nachweisverfahren), die strukturierte laminierte Funktionsschicht und die variable Abdichtungsmöglichkeit der Kanäle (offene und geschlossene Abschnitte) sind deutliche Vorteile dieser Technik. Dadurch bietet das neue Verfahren eindeutige Pluspunkte bei den neuesten Entwicklungen in der Mikrofluidik im Hinblick auf „Lab-on-a-Chip“ oder das „Labor in der Hosentasche“.
Die Erfindung wurde zum Patent angemeldet (DE anhängig). Die Technologie-Lizenz-Büro (TLB) GmbH unterstützt die Hochschule Karlsruhe bei der Patentierung und Vermarktung der Innovation. TLB ist mit der wirtschaftlichen Umsetzung dieser zukunftsweisenden Technologie beauftragt und bietet Unternehmen Möglichkeiten der Zusammenarbeit und Lizenzierung der Schutzrechte.
Für weitere Informationen: Innovationsmanager Dr. Frank Schlotter (fschlotter@tlb.de)

Die Technologie-Lizenz-Büro (TLB) GmbH ist eine Agentur für Erfindungs- und Patentmanagement in Deutschland. TLB begleitet Erfindungen von Hochschulen, Unternehmen und Erfindern auf ihrem Weg von der ersten Idee bis zum wirtschaftlichen Produkt.

Kontakt
Technologie-Lizenz-Büro (TLB) GmbH
Annette Siller
Ettlinger Str. 25
76137 Karlsruhe
0721 79004-0
asiller@tlb.de
http://www.tlb.de

Bildquelle: Foto: Prof. Karnutsch, Hochschule Karlsruhe

Lesen Sie mehr zum Thema

Disclaimer/ Haftungsausschluss: Für den oben stehend Pressemitteilung inkl. dazugehörigen Bilder / Videos ist ausschließlich der im Text angegebene Kontakt verantwortlich. Der Webseitenanbieter Onprnews.com distanziert sich ausdrücklich von den Inhalten Dritter und macht sich diese nicht zu eigen.

- Artikel teilen -

Erkunden Sie ähnliche Artikel wie Neuartiges Bonding-Verfahren verschließt strukturierte Glasträger exakt

HeBros. Druck-Teile.de: Revolutionäre 3D-Druck- und Konstruktionslösungen für Industrie und Privatkunden

27. Juni 2024 – HeBros. Druck-Teile.de, ein führendes Unternehmen im Bereich...

NIE MEHR ANGST VOR GOOGLE UPDATES

GOOGLE FÜRCHTET SICH VOR EX-LEHRER AUS LINZ MAG. JAGSCH statt SEO-AGENTUR, die...

Zweiter Fachkongress „Robotics meets eMobility“

Wie wir Batteriesysteme und Komponenten für die E-Mobilität wirtschaftlich in Deutschland...

Mitglieder gesucht: Biotechnologie & Analytik der neuen Generation

Ein neues ZIM-Netzwerk der IWS GmbH wird ab Herbst 2024 an Lösungen für eine zukunftsweisende Diagnostik arbeiten. Zur Entwicklung von Biotech-Produkten werden KMU und Forschungseinrichtungen gesucht.

Bodenbelege trifft auf KI: Expertenberatung revolutioniert Entscheidungsprozesse

In einer Welt, in der die Auswahl des richtigen Bodenbelags...

Bodenwelten – hochwertige Materialien und eine moderne Wohnraumberatung

Die Baustoff-Partner machen es möglich Die Baustoff-Partner, Ihr Experte für hochwertige Bodenbeläge,...

Simulation in der Mikrofluidik

Merkle CAE Solutions: Simulationsberechnung zur Optimierung gewünschter und unerwünschter Kapillarwirkungen In der...